## Problem 1.46

(a) Show that

$$
x \frac{d}{d x}(\delta(x))=-\delta(x) .
$$

[Hint: Use integration by parts.]
(b) Let $\theta(x)$ be the (Heaviside) step function:

$$
\theta(x) \equiv \begin{cases}1 & \text { if } x>0  \tag{1.95}\\ 0 & \text { if } x \leq 0\end{cases}
$$

Show that $d \theta / d x=\delta(x)$.

## Solution

Part (a)
Consider the integral of $x \delta^{\prime}(x)$ over the whole line and integrate by parts.

$$
\begin{aligned}
\int_{-\infty}^{\infty} x \frac{d}{d x}[\delta(x)] d x & =\left.x \delta(x)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} \frac{d}{d x}(x) \delta(x) d x \\
& =\left.(0)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty}(1) \delta(x) d x \\
& =\int_{-\infty}^{\infty}[-\delta(x)] d x
\end{aligned}
$$

Therefore, matching the integrands,

$$
x \frac{d}{d x}[\delta(x)]=-\delta(x) .
$$

## Part (b)

By definition, the delta function $\delta(x)$ satisfies the following two properties.
(1) $\delta(x)= \begin{cases}0 & \text { if } x \neq 0 \\ \infty & \text { if } x=0\end{cases}$
(2) $\int_{-\infty}^{\infty} \delta(x) d x=1$

Show that $d \theta / d x$ satisfies property (1). Note that because $0=\lim _{x \rightarrow 0^{-}} \theta(x) \neq \lim _{x \rightarrow 0^{+}} \theta(x)=1$, the derivative of the step function is not defined at $x=0$. But since $\theta(x)$ jumps from 0 to 1 at $x=0$, the slope can be thought of as $+\infty$ there.

$$
\begin{aligned}
\frac{d \theta}{d x} & = \begin{cases}\frac{d}{d x}(0) & \text { if } x<0 \\
\text { undefined } & \text { if } x=0 \\
\frac{d}{d x}(1) & \text { if } x>0\end{cases} \\
& = \begin{cases}0 & \text { if } x<0 \\
\infty & \text { if } x=0 \\
0 & \text { if } x>0\end{cases}
\end{aligned}
$$

Show that $d \theta / d x$ satisfies property (2).

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{d \theta}{d x} d x & =\theta(\infty)-\theta(-\infty) \\
& =1-0 \\
& =1
\end{aligned}
$$

Therefore,

$$
\frac{d \theta}{d x}=\delta(x)
$$

